If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2-54x-27=0
a = 9; b = -54; c = -27;
Δ = b2-4ac
Δ = -542-4·9·(-27)
Δ = 3888
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3888}=\sqrt{1296*3}=\sqrt{1296}*\sqrt{3}=36\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-54)-36\sqrt{3}}{2*9}=\frac{54-36\sqrt{3}}{18} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-54)+36\sqrt{3}}{2*9}=\frac{54+36\sqrt{3}}{18} $
| 5^1-6x=4^x | | 1-x/1+x=6 | | x/x-2+3(x-2)/x=28/5 | | 10z=24z-8 | | x^2+3x+6=9x+1 | | 9x^2-54-27=0 | | x^2+21x+38=8x+2 | | 1/2x+4=25 | | 5x+11=12x-7 | | (0,000000341-x)/x=6,0256 | | 40x+200=-20x+600 | | 0,000000341-x/x=6,0256 | | 5x+17=2x-9 | | 2b-2=-6 | | 5x-14=3x-4 | | x^2-3x+22=9x+2 | | 3-x/x=6 | | x^2+2x-24=3x-4 | | 9x-16=8x-7 | | x+0=432+x | | 40x+300=-20x+600 | | 4x+28=8x+8 | | 400x+300=-200x+600 | | x^2+4x-42=3 | | -400x+300=200x+600 | | -40x+300=20x+600 | | 3x+4=5(x-1)+7 | | X^2+15x-14=8x+4 | | (40+x)×(60+x)=4800 | | -2/3v=-7 | | 4x+43=10x+7 | | 8(5+x)=400 |